Added my solutions so far
This commit is contained in:
commit
442238a0d5
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
\#*
|
||||
*~
|
43
ex-1-11.rkt
Normal file
43
ex-1-11.rkt
Normal file
@ -0,0 +1,43 @@
|
||||
#lang racket
|
||||
|
||||
;; for n=100
|
||||
;; iterative version takes roughly 0.008 milliseconds.
|
||||
;; recursive version does not seem like it will finish any time soon.
|
||||
;; for n=50
|
||||
;; iterative version takes roughly 0.003 milliseconds in drracket
|
||||
;; recursive version has not yet finished executing after a couple minutes, and I got bored.
|
||||
;; for n=25.
|
||||
;; iterative version takes 0.002ms
|
||||
;; recursive version takes 46.5 ms
|
||||
;; yeah. that's big. okay. this shit's important.
|
||||
;; I wonder how it would be with memoization.
|
||||
|
||||
|
||||
(define-syntax-rule (meas form)
|
||||
(let ([my-time (current-inexact-milliseconds)])
|
||||
(let ([res form])
|
||||
(- (current-inexact-milliseconds) my-time))))
|
||||
|
||||
|
||||
(define (recursive n)
|
||||
(if (< n 3)
|
||||
n
|
||||
(+ (recursive (- n 1))
|
||||
(* 2 (recursive (- n 2)))
|
||||
(* 3 (recursive (- n 3))))))
|
||||
(define (iter a b c n)
|
||||
(if (<= n 0)
|
||||
c
|
||||
(iter b c (+ c (* 2 b) (* 3 a)) (- n 1))))
|
||||
(define (iter-start n)
|
||||
(iter 0 1 2 (- n 2)))
|
||||
|
||||
(define (ex-1-11 n)
|
||||
(let loop ((i n))
|
||||
(if (< i 2)
|
||||
#t
|
||||
(if (= (recursive i) (iter-start i))
|
||||
(loop (- i 1))
|
||||
(begin
|
||||
(display "UNEQUAL!")
|
||||
(displayln i))))))
|
11
ex-1-16.rkt
Normal file
11
ex-1-16.rkt
Normal file
@ -0,0 +1,11 @@
|
||||
#lang sicp
|
||||
|
||||
(define (fast-exp b n)
|
||||
;(define (even?)); already defined by racket
|
||||
(define (actual b n a)
|
||||
(cond
|
||||
((= n 0) a)
|
||||
;((= n 1) a)
|
||||
((even? n) (actual (* b b) (/ n 2) a))
|
||||
(else (actual b (- n 1) (* a b)))))
|
||||
(actual b n 1))
|
17
ex-1-17.rkt
Normal file
17
ex-1-17.rkt
Normal file
@ -0,0 +1,17 @@
|
||||
#lang racket
|
||||
|
||||
;; we are told to assume these are already defined.
|
||||
(define (double x)
|
||||
(+ x x))
|
||||
(define (halve x)
|
||||
(/ x 2))
|
||||
|
||||
;; multiplication. defined in terms of addition, double and halve.
|
||||
;; logarithmic time, constant space.
|
||||
(define (mult x y)
|
||||
(define (recc x y a)
|
||||
(cond
|
||||
((= y 0) a)
|
||||
((even? y) (recc (double x) (halve y) a))
|
||||
(else (recc x (- y 1) (+ a x)))))
|
||||
(recc x y 0))
|
36
ex-1-19.rkt
Normal file
36
ex-1-19.rkt
Normal file
@ -0,0 +1,36 @@
|
||||
#lang sicp
|
||||
|
||||
;; Yeah okay, this one was extremely satisfying.
|
||||
;; I just did the calculations on-paper.
|
||||
;; it's some simple algebra anyway, but I'll type it here:
|
||||
;; assuming Tpq on (a0, b0):
|
||||
;; a1 = b0q + a0 * ( p + q)
|
||||
;; b1 = b0p + a0q
|
||||
;; a2 = (b0p + a0q) * p + (b0q + a0 * ( p + q)) * (p + q)
|
||||
;; b2 = (b0p + a0q) * p + (b0q + a0 * ( p + q)) * q
|
||||
;;
|
||||
;; rearrange a2 and b2 into a similar form to the definition of a1 and b1:
|
||||
;; (i.e. define a2 and b2 in terms of a0 and b0 and p and q)
|
||||
;; a2 = b0 * (q^2 + 2*p*q) + a0 * (2*q^2 + 2*p*q + p^2)
|
||||
;; b2 = b0 * (p^2 + q^2) + a0 * (q^2 + 2*p*q)
|
||||
;;
|
||||
;; from here we can see that p'= p^2 + q^2, and q'= q^2 + 2 * p * q
|
||||
;; and as a result, we have logarithmic fibonacci!
|
||||
|
||||
;; printing the resulting number takes longer than calculating it lmao.
|
||||
|
||||
(define (fib n)
|
||||
(fib-iter 1 0 0 1 n))
|
||||
(define (fib-iter a b p q count)
|
||||
(cond ((= count 0) b)
|
||||
((even? count)
|
||||
(fib-iter a
|
||||
b
|
||||
(+ (* p p) (* q q)) ; compute p′
|
||||
(+ (* q q) (* 2 (* p q))) ; compute q′
|
||||
(/ count 2)))
|
||||
(else (fib-iter (+ (* b q) (* a q) (* a p))
|
||||
(+ (* b p) (* a q))
|
||||
p
|
||||
q
|
||||
(- count 1)))))
|
57
ex-1-29.rkt
Normal file
57
ex-1-29.rkt
Normal file
@ -0,0 +1,57 @@
|
||||
#lang racket
|
||||
|
||||
|
||||
(display "hell yrah")
|
||||
|
||||
|
||||
(define (sum term a next b)
|
||||
(define (iter a result)
|
||||
(if (>= a b)
|
||||
result
|
||||
(iter (next a) (+ result (term a)))))
|
||||
(iter a 0))
|
||||
|
||||
(define (integral f a b n)
|
||||
(define h (/ (- b a) n))
|
||||
(define (apply-f k)
|
||||
(f (+ a (* k h))))
|
||||
(define (term k)
|
||||
(+ (* 4 (apply-f k))
|
||||
(* 2 (apply-f (+ k 1)))))
|
||||
(* (/ h 3)
|
||||
(+ (apply-f 0) (- (apply-f n))
|
||||
(sum term 1 (λ (x) (+ x 2)) n))))
|
||||
|
||||
;;; HOLY SHIT. This has nothing to do with the integral example, I just
|
||||
;;; found out while reading section 1.3.2 that let is/can be implemented
|
||||
;;; using just lambdas.
|
||||
;;; So of course, I wrote a macro to do it.
|
||||
;;; now I'm wondering what are the absolute minimum amount of primitives
|
||||
;;; I would need to implement an entire scheme from the ground up.
|
||||
;;; (Ideally to write a compiler in itself, for itself!)
|
||||
;;; I guess this kind of thing really puts it into perspective huh.
|
||||
(define-syntax my-let
|
||||
(syntax-rules ()
|
||||
[(_ () body ...) (begin body ...)]
|
||||
[(_ ([var expr] binding ...) body ...)
|
||||
((lambda (var) (my-let (binding ...) body ...))
|
||||
expr) ]))
|
||||
|
||||
;;; god. I thought Common Lisp was nice. Scheme and Racket are just something else.
|
||||
|
||||
;; some stuff from the next exercise
|
||||
(define (pn x) (display x) (newline) x)
|
||||
(define tolerance 0.00001)
|
||||
(define (fixed-point f first-guess)
|
||||
(define (close-enough? v1 v2)
|
||||
(< (abs (- v1 v2))
|
||||
tolerance))
|
||||
(define (try guess)
|
||||
(let ((next (f guess)))
|
||||
(if (close-enough? guess next)
|
||||
(pn next)
|
||||
(try (pn next))
|
||||
)))
|
||||
(try first-guess))
|
||||
; value of phi i think?
|
||||
(fixed-point (lambda (x) (+ 1 (/ 1 x))) 1)
|
42
ex-1-37.rkt
Normal file
42
ex-1-37.rkt
Normal file
@ -0,0 +1,42 @@
|
||||
#lang racket
|
||||
|
||||
(define (cont-frac nf df k)
|
||||
(define (recurse i)
|
||||
(if (>= i k)
|
||||
0
|
||||
(/ (nf i) (+ (df i) (recurse (+ 1 i))))))
|
||||
(recurse 0))
|
||||
|
||||
; produces the same result as cont-frac, but
|
||||
; generates an iterative process.
|
||||
(define (cont-frac-iterative nf df k)
|
||||
(define (iterate i numer denom)
|
||||
(if (<= i 0)
|
||||
(/ numer denom)
|
||||
(iterate (- i 1) (nf (- i 1)) (+ (df (- i 1)) (/ numer denom)))))
|
||||
(iterate (- k 1) (nf k) (df k)))
|
||||
|
||||
(define (golden-ratio k)
|
||||
"cont-frac generates 1/golden ratio, so we just inverse it to get the
|
||||
real thing. call with k=1000 or something to get an accurate result"
|
||||
(/ 1.0 (cont-frac-iterative (λ (i) 1.0) (λ (i) 1.0) k)))
|
||||
|
||||
;; example 1-38
|
||||
(define (e-helper i)
|
||||
(let ((r (remainder (- i 1) 3)))
|
||||
(if (= 0 r)
|
||||
(* 2.0 (/ (+ i 2) 3))
|
||||
1.0)))
|
||||
(define (eulers-constant k)
|
||||
"Finds euler's constant. the continued fraction gives e - 2, so we add 2."
|
||||
(+ 2 (cont-frac-iterative (λ (i) 1.0) e-helper k)))
|
||||
|
||||
;; example 1-39
|
||||
(define (tan-cf x k)
|
||||
"Finds an approximation of the tangent function. The first numerator is not negative,
|
||||
even though our numerator function calculates them all as negative, so we need to negate
|
||||
the result at the end."
|
||||
(-
|
||||
(cont-frac-iterative (λ (i) (- (if (<= i 0) x (* x x))))
|
||||
(λ (i) (- (* 2 (+ i 1)) 1))
|
||||
k)))
|
99
ex-1-40-thru-45.rkt
Normal file
99
ex-1-40-thru-45.rkt
Normal file
@ -0,0 +1,99 @@
|
||||
#lang racket
|
||||
|
||||
; definitions from some earlier chapters.
|
||||
(define (fixed-point f first-guess)
|
||||
(define tolerance 0.01)
|
||||
(define (close-enough? v1 v2)
|
||||
(< (abs (- v1 v2))
|
||||
tolerance))
|
||||
(define (try guess)
|
||||
(let ((next (f guess)))
|
||||
(if (close-enough? guess next)
|
||||
next
|
||||
(try next)
|
||||
)))
|
||||
(try first-guess))
|
||||
|
||||
; some definitions: these are given by the book.
|
||||
(define dx 0.00001)
|
||||
(define (deriv g)
|
||||
(lambda (x) (/ (- (g (+ x dx)) (g x)) dx)))
|
||||
|
||||
(define (newton-transform g)
|
||||
(lambda (x) (- x (/ (g x) ((deriv g) x)))))
|
||||
(define (newtons-method g guess)
|
||||
(fixed-point (newton-transform g) guess))
|
||||
|
||||
; example 1-40
|
||||
(define (cubic a b c)
|
||||
(λ (x) (+ (expt x 3)
|
||||
(* a (expt x 2))
|
||||
(* b (expt x 1))
|
||||
c)))
|
||||
|
||||
; example 1-41
|
||||
; NOTE: inc isn't defined in racket, so I just defined that too
|
||||
(define (inc x) (+ 1 x))
|
||||
(define (double f)
|
||||
(λ (x) (f (f x))))
|
||||
|
||||
(display (((double (double double)) inc) 5))
|
||||
(newline)
|
||||
; => 21
|
||||
|
||||
; example 1-42
|
||||
(define (square x) (* x x))
|
||||
(define (compose f g) (λ (x) (f (g x))))
|
||||
|
||||
(display ((compose square inc) 6))
|
||||
; => 49
|
||||
|
||||
; example 1-43
|
||||
(define (repeated f n)
|
||||
"This procedure generates an iterative process."
|
||||
(define (iter ret i)
|
||||
(if (<= i 1)
|
||||
ret
|
||||
(iter (compose f ret) (- i 1))))
|
||||
(iter f n))
|
||||
|
||||
; example 1-44
|
||||
; procedure average is defined here for convenience
|
||||
(define (average a b c)
|
||||
(/ (+ a b c) 3))
|
||||
(define (smooth f dx)
|
||||
(λ (x)
|
||||
(average (f (- x dx))
|
||||
(f x)
|
||||
(f (+ x dx)))))
|
||||
; example asks us to "show" how n-fold smoothing would be done.
|
||||
; here it is, with the procedure `repeated`
|
||||
; note we need to pass an anonymous function to do it because the way
|
||||
; I defined it, `smooth` accepts two arguments, not one.
|
||||
; thankfully one of the arguments will be the same for all calls,
|
||||
; so we can just curry it up a little.
|
||||
(define (some-func x) x) ; assume there is some function we want to smooth.
|
||||
(define n 2)
|
||||
((repeated (λ (f) (smooth f 0.001)) n) some-func)
|
||||
|
||||
; example 1-45
|
||||
; this one looks long, I'm skipping for now
|
||||
|
||||
; example 1-46
|
||||
(define (iterative-improve good-enough? improve)
|
||||
"I use a define here because the returned procedure will be recursive
|
||||
(an iterative process, but recursive function)
|
||||
I guess we could use `do` for this but whatever"
|
||||
(define (ret x)
|
||||
(if (good-enough? x)
|
||||
x
|
||||
(ret (improve x))))
|
||||
ret)
|
||||
|
||||
(define (sqrt n)
|
||||
"Careful: we're calling iterative-improve, which creates a procedure,
|
||||
then we're calling the returned procedure with 1 as a parameter."
|
||||
((iterative-improve
|
||||
(λ (x) (< (abs (- (* x x) n)) 0.0000001))
|
||||
(λ (x) (/ (+ x (/ n x)) 2.0)))
|
||||
2.0))
|
167
ex-2-20.rkt
Normal file
167
ex-2-20.rkt
Normal file
@ -0,0 +1,167 @@
|
||||
#lang sicp
|
||||
;; 2.17 : while I was having fun with this,
|
||||
;; I came up with the following monstrosity
|
||||
;; yes, it works, and is completely equivalent
|
||||
;; the second, less horrible implementation
|
||||
(define (last-pair l)
|
||||
(or (and (or (null? l) (null? (cdr l))) l)
|
||||
(last-pair (cdr l))))
|
||||
(define (last-pair2 l)
|
||||
(cond
|
||||
((null? l) l)
|
||||
((null? (cdr l)) l)
|
||||
(#t (last-pair2 (cdr l)))))
|
||||
|
||||
;; 2.18
|
||||
(define (reverse l)
|
||||
(define (iter acc l)
|
||||
(if (null? l)
|
||||
acc
|
||||
(iter (cons (car l) acc)
|
||||
(cdr l))))
|
||||
(iter '() l))
|
||||
|
||||
(equal? '(4 3 2 1) (reverse '(1 2 3 4)))
|
||||
|
||||
;; 2.19
|
||||
|
||||
(define (cc amount coin-values)
|
||||
(define (first-denomination cv)
|
||||
(car cv))
|
||||
(define (except-first-denomination cv)
|
||||
(cdr cv))
|
||||
(define no-more? null?)
|
||||
(cond ((= amount 0) 1)
|
||||
((or (< amount 0) (no-more? coin-values)) 0)
|
||||
(else
|
||||
(+ (cc amount
|
||||
(except-first-denomination
|
||||
coin-values))
|
||||
(cc (- amount
|
||||
(first-denomination
|
||||
coin-values))
|
||||
coin-values)))))
|
||||
|
||||
;; 2.20
|
||||
(define (filter f l)
|
||||
(cond
|
||||
((null? l) l)
|
||||
((f (car l)) (cons (car l) (filter f (cdr l))))
|
||||
(#t (filter f (cdr l)))))
|
||||
(define (same-parity a . b)
|
||||
(cons a
|
||||
(filter (if (even? a) even? odd?)
|
||||
b)))
|
||||
(equal? (same-parity 1 2 3 4 5 6) '(1 3 5))
|
||||
|
||||
;; 2.21
|
||||
(define (square x) (* x x))
|
||||
(define (square-list-direct items)
|
||||
(if (null? items)
|
||||
'()
|
||||
(cons (square (car items)) (square-list-direct (cdr items)))))
|
||||
(define (square-list-map items)
|
||||
(map square items))
|
||||
|
||||
;; 2.22 this exercise asks for an explanation on why the
|
||||
;; accumulated result is in reverse order.
|
||||
;; This is because, at each iteration, the newest item
|
||||
;; is added to the head of the list - always.
|
||||
;; this means that the first processed item will be added
|
||||
;; to the head, then the second, then the third. So
|
||||
;; the list '(1 2 3) will be processed as such:
|
||||
|
||||
;; '(1 2 3) '()
|
||||
;; '(2 3) '(1)
|
||||
;; '(3) '(4 1)
|
||||
;; '() '(9 4 1)
|
||||
|
||||
;; So the lists behave like stacks, i.e. FILO ADTs.
|
||||
|
||||
;; the "solution" proposed by Louis Reasoner
|
||||
;; does not work, because that doesn't change the order in
|
||||
;; which the items are processed or where the items are
|
||||
;; inserted. It only changes the positions of car and cdr,
|
||||
;; and in practice this will ruin the structure of the list,
|
||||
;; nothing more.
|
||||
|
||||
;; 2.23
|
||||
;; a trivial implementation: (just use map and discard result)
|
||||
(define (trivial-for-each f l)
|
||||
(map f l)
|
||||
#t)
|
||||
;; but this isn't much useful, as the memory is still allocated
|
||||
;; (if promptly recollected by the GC) for map, defeating the purpose.
|
||||
;; Here's an implementation that simply ignores the results:
|
||||
(define (my-for-each f l)
|
||||
(if (null? l)
|
||||
#t
|
||||
(begin (f (car l))
|
||||
(my-for-each f (cdr l)))))
|
||||
;; no consing is done, and this generates an iterative process,
|
||||
;; so no stack allocations either. Equivalent to a for-loop in
|
||||
;; a language like C or C++.
|
||||
|
||||
|
||||
;; 2.25 - can also be written as: (car (cdaddr l))
|
||||
(car (cdr (car (cdr (cdr '(1 3 (5 7) 9))))))
|
||||
(car (car '((7))))
|
||||
; third one's too long. I'll be using cadr to mean (car (cdr x))
|
||||
(cadr (cadr (cadr (cadr (cadr (cadr '(1 (2 (3 (4 (5 (6 7))))))))))))
|
||||
|
||||
;; 2.26 - doesn't require doing anything, just see what they do lol
|
||||
|
||||
|
||||
;; 2.27
|
||||
;; similar to regular reverse, with the addition that
|
||||
;; if the current element is itself a list, we cons
|
||||
;; its reverse instead.
|
||||
;; O(n) time complexity (where n = leaf count)
|
||||
;; O(k) space complexity (where k = branch depth? not sure about the correct terminology)
|
||||
(define (deep-reverse l)
|
||||
(define (iter acc l)
|
||||
(cond
|
||||
((null? l) acc)
|
||||
((list? (car l)) (iter (cons (deep-reverse (car l)) acc)
|
||||
(cdr l)))
|
||||
(#t (iter (cons (car l) acc)
|
||||
(cdr l)))))
|
||||
(iter '() l))
|
||||
|
||||
;; 2.28
|
||||
;; ooh, this one's spicy
|
||||
;; okay, I think I'll first use a recursive process for this,
|
||||
;; then translate it to an iterative one.
|
||||
;; Note: iterative process will require a reverse at the end,
|
||||
;; unless mutable conses are in play. That's why I used sicp lang for this.
|
||||
(define (fringe l)
|
||||
(cond
|
||||
((null? l) l)
|
||||
((list? (car l)) (append (fringe (car l))
|
||||
(fringe (cdr l))))
|
||||
(#t (cons (car l)
|
||||
(fringe (cdr l))))))
|
||||
|
||||
(define (fringe-iter l)
|
||||
"This is mostly the same actually. We just change the mechanism for adding stuff.
|
||||
Efficiency-wise, the only difference is that this impl only goes another level
|
||||
deep for every level of nested lists (instead of going another level deep *at every iteration*)
|
||||
So, better, but still not perfect if you have a tree a billion levels deep.
|
||||
|
||||
The difference here from a typical iterative process is the mutation: instead
|
||||
of using pure functions I just had the iterator keep track of the end of the list."
|
||||
(define (add end x)
|
||||
(let ((c (cons x '())))
|
||||
(set-cdr! end c)
|
||||
c))
|
||||
(define (iter acc-end l)
|
||||
(cond
|
||||
((null? l) acc-end)
|
||||
((list? (car l)) (iter (iter acc-end (car l))
|
||||
(cdr l)))
|
||||
(#t (iter (add acc-end (car l))
|
||||
(cdr l)))))
|
||||
(let ((sentinel (cons #f '())))
|
||||
(iter sentinel l)
|
||||
(cdr sentinel)))
|
||||
|
61
ex-2-30.rkt
Normal file
61
ex-2-30.rkt
Normal file
@ -0,0 +1,61 @@
|
||||
#lang racket
|
||||
|
||||
(define (accumulate op initial sequence)
|
||||
(if (null? sequence)
|
||||
initial
|
||||
(op (car sequence)
|
||||
(accumulate op initial (cdr sequence)))))
|
||||
|
||||
(define (square x) (* x x))
|
||||
|
||||
;; 2.30 oooh, we getting cool now are we?
|
||||
(define (square-tree l)
|
||||
(cond
|
||||
((null? l) l)
|
||||
((list? (car l)) (cons (square-tree (car l))
|
||||
(square-tree (cdr l))))
|
||||
(#t (cons (square (car l))
|
||||
(square-tree (cdr l))))))
|
||||
|
||||
(define (square-tree-map l)
|
||||
(map (λ (x)
|
||||
(if (list? x)
|
||||
(square-tree-map x)
|
||||
(square x)))
|
||||
l))
|
||||
|
||||
;; 2.31 hohoohoho nice
|
||||
(define (tree-map f l)
|
||||
(map (λ (x)
|
||||
(if (list? x)
|
||||
(tree-map f x)
|
||||
(f x)))
|
||||
l))
|
||||
(define (square-tree-final l) (tree-map square l))
|
||||
|
||||
;; 2.32 hmm.. cool stuff.
|
||||
(define (subsets s)
|
||||
(if (null? s)
|
||||
(list '())
|
||||
(let ((rest (subsets (cdr s))))
|
||||
(append rest (map (λ (l) (cons (car s) l)) rest)))))
|
||||
;; The reason this works, is because the set of subsets of a set s
|
||||
;; can be defined as such:
|
||||
;; - if s is the empty set, the result is a set containing the empty set
|
||||
;; - otherwise, the result is a set containing:
|
||||
;; 1. the subsets of s without the first element of s
|
||||
;; 2. the subsets of s with the first element of s
|
||||
;; 2 can be defined as the first element of s added to every
|
||||
;; subset of s that does not contain the first element of s.
|
||||
;; probably not a very rigorous or formal definition, but good
|
||||
;; enough for now.
|
||||
|
||||
|
||||
;; 2.33
|
||||
(define (map p sequence)
|
||||
(accumulate (lambda (x y) ⟨??⟩) nil sequence))
|
||||
(define (append seq1 seq2)
|
||||
(accumulate cons ⟨??⟩ ⟨??⟩))
|
||||
(define (length sequence)
|
||||
(accumulate ⟨??⟩ 0 sequence))
|
||||
|
93
ex-2.1-thru-2.6
Normal file
93
ex-2.1-thru-2.6
Normal file
@ -0,0 +1,93 @@
|
||||
#lang racket
|
||||
|
||||
;; 2.1
|
||||
(define (normalize n d)
|
||||
(if (equal? (< n 0) (< d 0))
|
||||
(cons (abs n) (abs d))
|
||||
(cons (- (abs n)) (abs d))))
|
||||
(define (make-rat n d)
|
||||
(let ([g (gcd n d)])
|
||||
; if they have the same sign, just take absolutes
|
||||
(normalize (/ n g) (/ d g))))
|
||||
|
||||
(define (print-rat rat)
|
||||
(display (car rat))
|
||||
(display "/")
|
||||
(display (cdr rat))
|
||||
(newline))
|
||||
|
||||
(map print-rat
|
||||
(map (λ (x) (apply make-rat x))
|
||||
'((2 3)
|
||||
(1 2)
|
||||
(-3 4)
|
||||
(-100 -4)
|
||||
(100 -4))))
|
||||
|
||||
;; 2.2
|
||||
;; we are using racket, so we could also define a structure.
|
||||
;; (struct point (x y))
|
||||
;; instead we'll keep to the book and use cons cells.
|
||||
(define point-x car)
|
||||
(define point-y cdr)
|
||||
(define point cons)
|
||||
;; the above could be replaced with
|
||||
; (struct point (x y))
|
||||
(define line-p1 car)
|
||||
(define line-p2 cdr)
|
||||
(define line cons)
|
||||
; (struct line (p1 p2))
|
||||
|
||||
(define (average a b) (/ (+ a b) 2))
|
||||
(define (midpoint-segment ls)
|
||||
(point (average (point-x (line-p1 ls))
|
||||
(point-x (line-p2 ls)))
|
||||
(average (point-y (line-p1 ls))
|
||||
(point-y (line-p2 ls)))))
|
||||
|
||||
;; 2.3
|
||||
;; not sure what the book means here. But I guess we can implement
|
||||
;; rectangles as pairs, too, since we only need two corners really.
|
||||
;; as "another representation", I guess we could store two line segments?
|
||||
;; but either way the rect-p1 and rect-p2
|
||||
;; functions can be replaced very easily.
|
||||
;; the area and perimeter functions do not care about their implementation.
|
||||
(define rect-p1 car)
|
||||
(define rect-p2 cdr)
|
||||
(define rect cons)
|
||||
|
||||
;; further abstraction, actually: rectangle side 1.
|
||||
;; returns the length of rect's one side
|
||||
(define (rect-side-helper rect fun)
|
||||
(abs (- (fun (rect-p1 rect))
|
||||
(fun (rect-p2 rect)))))
|
||||
(define (rect-s1 rect)
|
||||
(rect-side-helper rect point-x))
|
||||
(define (rect-s2 rect)
|
||||
(rect-side-helper rect point-y))
|
||||
|
||||
(define (area rect)
|
||||
(* (rect-s1 rect) (rect-s2 rect)))
|
||||
(define (perimeter rect)
|
||||
(* 2 (+ (rect-s1 rect) (rect-s2 rect))))
|
||||
|
||||
; 2.6
|
||||
(define zero (lambda (f) (lambda (x) x)))
|
||||
(define (add-1 n)
|
||||
(lambda (f) (lambda (x) (f ((n f) x)))))
|
||||
(define one (λ (f) (λ (x) (f x)))) ;; applies f once.
|
||||
(define two (λ (f) (λ (x) (f (f x)))))
|
||||
;(add-1 zero) ; is the same as
|
||||
;(lambda (f) (lambda (x) (f ((zero f) x))))
|
||||
;(lambda (f) (lambda (x) ((add-1 zero) (((add-1 zero) f) x))))
|
||||
|
||||
(define (addition n1 n2)
|
||||
"Returns a function that takes a function f, returns:
|
||||
A function that takes a parameter x, applies f to x n1 + n2 times
|
||||
(n1 and n2 being church numerals, i.e. λfλx forms.)"
|
||||
(lambda (f) (lambda (x)
|
||||
((n2 f) ((n1 f) x))
|
||||
)))
|
||||
|
||||
(define (de-churchify n)
|
||||
((n (λ (x) (+ x 1))) 0))
|
88
ex-2.rkt
Normal file
88
ex-2.rkt
Normal file
@ -0,0 +1,88 @@
|
||||
#lang racket
|
||||
|
||||
(define (mul-interval x y)
|
||||
(let ((p1 (* (lower-bound x) (lower-bound y)))
|
||||
(p2 (* (lower-bound x) (upper-bound y)))
|
||||
(p3 (* (upper-bound x) (lower-bound y)))
|
||||
(p4 (* (upper-bound x) (upper-bound y))))
|
||||
(make-interval (min p1 p2 p3 p4)
|
||||
(max p1 p2 p3 p4))))
|
||||
|
||||
(define (make-interval a b) (cons a b))
|
||||
|
||||
(define (add-interval a b)
|
||||
(make-interval (+ (lower-bound a) (lower-bound b))
|
||||
(+ (upper-bound a) (upper-bound b))))
|
||||
|
||||
;; 2.7
|
||||
;; simple definitions.
|
||||
(define upper-bound cdr)
|
||||
(define lower-bound car)
|
||||
|
||||
|
||||
;; 2.8
|
||||
(define (interval-diff f a b)
|
||||
(make-interval (- (lower-bound a) (upper-bound b))
|
||||
(- (upper-bound a) (lower-bound b))))
|
||||
|
||||
|
||||
;; 2.9 this one's just about reasoning, no programming, and I feel too lazy to explain
|
||||
;; sorry.
|
||||
|
||||
;; 2.10 : simple 'nuff.
|
||||
(define (div-interval x y)
|
||||
(if (= (lower-bound y) (upper-bound y))
|
||||
(error "WHY? WHY MUST YOU TORTURE ME SO?")
|
||||
(mul-interval
|
||||
x
|
||||
(make-interval (/ 1.0 (upper-bound y))
|
||||
(/ 1.0 (lower-bound y))))))
|
||||
|
||||
;; 2.11 : This one's also somewhat simple.
|
||||
;; we ONLY need more than two multiplications
|
||||
;; if BOTH intervals have different signs on their upper
|
||||
;; and lower bounds. otherwise, naive logic works fine.
|
||||
|
||||
(define (mul-interval2 x y)
|
||||
(define (different? n)
|
||||
(and (< (lower-bound n) 0) (< (upper-bound n) 0)))
|
||||
(if (and (different? x) (different? y))
|
||||
(let ((p1 (* (lower-bound x) (lower-bound y)))
|
||||
(p2 (* (lower-bound x) (upper-bound y)))
|
||||
(p3 (* (upper-bound x) (lower-bound y)))
|
||||
(p4 (* (upper-bound x) (upper-bound y))))
|
||||
(make-interval (min p1 p2 p3 p4)
|
||||
(max p1 p2 p3 p4)))
|
||||
(make-interval (* (lower-bound x) (lower-bound y))
|
||||
(* (upper-bound x) (upper-bound y)))))
|
||||
|
||||
;; 2.12 : simple nuff.
|
||||
(define (make-center-width c w)
|
||||
(make-interval (- c w) (+ c w)))
|
||||
(define (center i)
|
||||
(/ (+ (lower-bound i) (upper-bound i)) 2))
|
||||
(define (width i)
|
||||
(/ (- (upper-bound i) (lower-bound i)) 2))
|
||||
(define (make-center-percent c p)
|
||||
(make-center-width c (* c (/ p 100))))
|
||||
(define (percent i)
|
||||
(* (/ (width i) 2) 100))
|
||||
|
||||
;; 2.13 & 2.14
|
||||
(define (par1 r1 r2)
|
||||
(div-interval (mul-interval r1 r2)
|
||||
(add-interval r1 r2)))
|
||||
(define (par2 r1 r2)
|
||||
(let ((one (make-interval 1 1)))
|
||||
(div-interval
|
||||
one (add-interval (div-interval one r1)
|
||||
(div-interval one r2)))))
|
||||
|
||||
(define A (make-interval 100 101))
|
||||
(define B (make-interval 200 201))
|
||||
|
||||
(div-interval A A)
|
||||
(div-interval (make-interval 1 1) A)
|
||||
(div-interval B A)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user